Простой самодельный терморегулятор для инкубатора своими руками. Часть 1

Данная схема простого терморегулятора, помимо самодельного инкубатора, применялась для согрева ульев ослабленных пчелиных семей. Его также возможно использовать тогда, когда перегрев может привести к непоправимым последствиям.

По причине  выхода из строя элементов схемы термостата для инкубатора, либо из-за непредсказуемых скачков питающего напряжения, любой даже самый надежный терморегулятор для инкубатора   может выйти из строя. Несмотря на то, что автомат от перегрева немного усложняет терморегулятор для инкубатора в целом, но преимущество от его наличия бесспорно.

Принципиальная схема простого самодельного терморегулятора для инкубатора

Схема защиты от перегрева работает с высокоточным (0,05 С) терморегулятором. Собственно терморегулятор может быть любым, но он должен работать по принципу фазоимпульсного регулирования. Защита основана на свойстве фазоимпульсного регулятора выдавать малые импульсы управления нагревателем после выхода на рабочий режим температуры. Обратная связь осуществляется при помощи самодельной оптопары, состоящей из 15-ти ваттной лампы накаливания и фототранзистора ФТ2К.

схема терморегулятора для инкубатора простая

Схема терморегулятора изображена на рис. 1.10. Задающим элементом является конденсатор С4. Стабилизированное  стабилитроном VD1 переменное напряжение с вторичной обмотки трансформатора Tl выпрямляется диодами VD3, VD4 и попеременно поступает на конденсатор С4 через резисторы R6, R7. Конденсатор С4 заряжается положительной полуволной напряжения, поступающей через диод VD3 и резистор R6.

фото терморегулятора инкубатора

Отрицательной полуволной напряжения, поступающей через диод VD4 и терморезистор R7, конденсатор разряжается. Разряд конденсатора происходит не до нуля, а до определенного уровня, например U0. Управление тиристором VS1 осуществляется усилителем тока, выполненном на транзисторе VT1.

Для привязки постоянного напряжения, поступающего с транзистора VT2, к фазе переменного, существует фазовращающая цепь R3, С1. Переменное напряжение с фазовращателя через конденсатор С2 суммируется с постоянным на базе транзистора VT1. Таким образом, тиристор VS2 открывается только в положительные полупериоды напряжения.

При нагревании терморезистора R7 его сопротивление уменьшается, ток разряда конденсатора С4 увеличивается. Напряжение на конденсаторе уменьшается до уровня U,. Формирование длительности управляющего импульса тиристорами поясняет рис. 1.11.

Диаграмма управляющего импульса терморегулятора для инкубатора

При напряжении на конденсаторе С4 равном U0, на нагреватель подается напряжение большее время t0,чем при напряжении U1, равном времени t1. В установившемся режиме длительность импульса управления тиристорами пропорциональна тепловым потерям, поэтому импульсы имеют малую амплитуду. Лампа накаливания ЕL1, включенная параллельно нагревателю, в установившемся режиме не будет светиться.

Блок защиты от перегрева показан на рис. 1.12. Сигнал с фототранзистора VTl проходит через формирователь на элементе DD1.1, переключатель рода работы SA1, логический элемент DD1.2 и устанавливает управляющий триггер DD2.1. Управляющий триггер включает: ждущий мультивибратор звуковой сигнализации на элементах DD1.3, DD1.4 и излучателе ZQ1; ждущий мультивибратор световой сигнализации на триггере DD2.2,и светодиод HL1; реле Кl через ключевой транзистор VT2.

Блок защиты от перегрева терморегулятора для самодельного инкубатора

Перед началом работы с самодельным терморегулятором необходимо переключатель рода работы установить в положение «Пуск». При включении напряжения питания управляющий триггер DD2.1 обнуляется интегрирующей цепочкой С2, R2. Реле Kl и ждущие мультивибраторы аварийной сигнализации выключены.

Фототранзистор VT1 установлен рядом с лампой накаливания ЕL1 (рис. 1.10). При включении питания нагреватель холодный, поэтому на него поступает максимальное напряжение, и лампа EL1 загорается. Фототранзистор открывается, на выходе элемента DD1.1 появляется лог. 0, светодиод НL1 светится. На входах элемента DD1 2 лог. 1, а на выходе — лог. 0. Конденсатор Cl разряжен и на установочном входе S триггера DD2.1 уровень лог. 0.

Если терморезистор R7 (рис. 1.10) установлен вблизи нагревателя или на самом нагревателе, то происходит быстрый выход на режим стабилизации температуры, установленной резистором R6. Через 2…3 с светодиод погаснет, и можно будет установить переключатель тип работы SAl в положение «Работа».

Лампа не светится, фототранзистор закрыт, и на входе элемента DD1.1 установлен лог. 0. Регулирующие устройства на тиристорах в терморегуляторах чувствительны к импульсным помехам по сети. Во время импульса помехи тиристор открывается, а лампа кратковременно вспыхивает.

На выходе элемента DD1.2 возникают короткие импульсы, которые будут заряжать конденсатор Cl. Поскольку постоянная времени интегрирующей цепочки С l — R3 большая, на входе S триггера DD2.1 появится лог. 1 только через (примерно) одну секунду после включения лампы. Этим достигается большая помехозащищенность блока защиты.

Если лампа горит более одной секунды, управляющий триггер DD2.1 установится в единичное состояние. На вход 13 элемента DD1.2 поступит лог. О, запрещая прохождение сигналов, вызванных изменением состояния фототранзистора. Включается реле К1 и размыкаются контакты реле К1.1, ТЭН обесточивается. Аварийная ситуация работы самодельного терморегулятора индицируется миганием светодиода HL1 с периодом 1 с и звуковым сигналом.

Повторное включение после аварийной ситуации возможно только после выключения напряжения питания. Лампа накаливания EL1 с патроном «миньон» установлена вместе с фототранзистором VI1 в отдельной светонепроницаемой коробке.


Добавить комментарий

Ваш электронный адрес не будет опубликован.

*


\n